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REFINEMENT OF WALL-TURBULENCE HYPOTHESES 

V. A. Kuznetsov UDC 532.542.4 

The correspondence between the hypotheses and the experimental data is examined. 
The distribution functions of the Prandtl mixing length near a smooth wall and the 
Komogorov turbulence scale in pipe flow are refined. 

Present-day methods for the calculation of heat and mass transfer associated with the 
turbulent flow of a liquid or gas in pipes and boundary layers are based on semiempirical 
theories using a certain linear turbulence scale. In turn, various hypotheses are used to 
determine the turbulence scale, but they have not been corroborated by direct comparison 
of the calculated and experimental values of the scale. It is customary to test only the 
correspondence of the proposed hypotheses with the measured velocity profile, and this 
approach admits differing, occasionally mutually exclusive assumptions in the face of the 
scatter of the experimental points. 

In the case of the mixing length 1 introduced by Prandtl, e.g., neither of the more 
precise relations of Prandtl [i] 

or Rotta [2] 

l+  = •  (1 )  

l+ = ~ (y+ - -  Yl§ (2 )  

has been determined, where y~+ is a quantity roughly equal to the dimensionless thickness 
of the viscous sublayer. The discrepancy of the results of calculations according to these 
relations near a wall (for y+ ~ 30) attains 30-50%, which does not meet the accuracy 
requirements of engineering computations. 

Neither has the transition from the quadratic law predicted by L. D. Landau and V. G. 
Levich [3] for the variation of the mixing length 1 near a wall to a linear function been 
determined. According to Sherstyuk's hypothesis [4], the quadratic function is replaced 
by the linear law (2) at a dimensionless distance from the wall y+ = 15. According to 
Van Driest's hypothesis [5], this transition is a smooth exponential, which approaches the 
linear law (i) asymptotically as the dimensionless distance y+ increases: 

l+  == •  [ 1 - -  exp (-- F+/A+)]. (3) 
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Fig. i. Distribution of relative turbulent tangential stress near a smooth 
wall. 1-3) Experimental data of [6]: i) in a boundary layer; 2) in a pipe at 
Re = 500,000; 3) in a pipe at Re = 50,000; 4, 5) calculated curves according to 
the respective hypotheses of Sherstyuk [4] and Van Driest [5]. 

Fig. 2. Distribution of the dimensionless mixing length near a smooth wall. 
1-4) Calculated according ~o Eqs. (1)-(3) and (6), respectively; 5-7) in a bound- 
ary layer for air, water, and transformer oil, respectively; 8-10) pipe flow of 
water at Re = 23,300, 43,400, and 105,000, respectively. 
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Fig. 3. Distribution of the reduced mixing length and 
reduced turbulence space scale along the pipe radius. 
i] According to Eq. (i) for ~ = 0.41; 2, 3) ~o/R accord- 
%ng to Eq| (4) and the experimental data of [9]; 4, 5) 

IKo/R according to Eq, (i0) and the experimental data of 
f9, 13]; 2, 4) Re = 43,400; 3, 5) Re = 396,000. 

To compare the latter two hypotheses we recruit the experimental data of Klebanov a~ 
Laufer [6] on the distribution of the relative turbulent tangential stress --<urv'>/u~ 
near a smooth wall in a boundary layer and in pipes; these results are represented by the 
points in Fig. i. 

The deviation of the dashed curve 4 from the ~perimental points in the interval i0 < 
y+ < 25 indicates that Sherstyuk's hypothesis yields a 10-12% overestimation of the calcu- 
lated values of the mixing length. The exponential function (3) gives better agreement with 
the ~perimental points in this inverval. 

On the other hand, Van Driest's hypothesis [5] is not sufficiently accurate in the 
inverval 20 < y+ < 40. The dashed curve 5, which is plotted on the basis of Eq. (3) in 
application to turbulent flow in a pipe of diameter 247 mm at Re = 50,000 and for the values 
of the parameters ~ = 0.4 a~ A+ = 27 recommended in [5], lies somewhat below the corresponding 
experimental points. 
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The function (3) can be improved by comparing the values of the mixing length calcu- 
lated according to the experimental data with this function. Inasmuch as the direct 
graphical or numerical differentiation of the experimental velocity distributions near the 
wall induces inadmissible errors, the computational method proposed in [7] is applicable 
in the present study. 

If we assume that the exponential function (3) goes over smoothly to the linear function 
(2) at a distance y+ equal to the value of the parameter A+ in Eq. (3), the dimensionless 
aistance in Eq. (2) acquires the value Y14 = A+/e, and the parameter A+ enters into the equa- 
tion of a logarithmic velocity distribution [7]: 

1 (  1 1 u + = - - l n  y+  , . q - -  + 0 . 2 0 5 A + + 0 . 3 2 .  ( 4 )  
• e 2• 

When the stated assumption is valid, the parameter A+ in Eq. (4) must remain constant in the 
interval where Eq. (2) is valid, i.e., at aistance y+ greater than A+. 

It has been shown [7] that the quantity A+ in (4), calculated according to the experi- 
mental data, decreases abruptly near a smooth wall (for y+ > 25) approximately from 30 to 
24-26 as the dimensionless distance increases to y/R = 0.I. Consequently, the law governing 
the variation o~ the mixing length l+ does not coincide with the function (2) in this interval. 

In calculating the mixing length in the present study, we use an equation deduced from 
the representation of the turbulent tangential stress according to Prandtl's hypothesis [i]: 

du+ _ 0.5(V" 1 @ 4/~,~/,r w _ 1)/12+. 
dy+ 

The velocity derivative du+/dy+ is determined by differentiating Eq. (4): 

(5) 

du+ __ Ou+ ~_ &t+ dA+ 

@ +  Oy+ @A+ dy+ 

The derivative dA+/dy+ is determined by differentiating the computer-generated analytical 
expression for the distributions A+ [7]. 

To calculate the mixing length we recruit experimental data on the velocity distribution 
in a boundary layer associated with the flow of air, water, and transformer oil [8] and also 
in the stabilized pipe flow of water [9]. The results of the calculations, which are shown 
in Fig. 2, show that mixing length l+ grows more rapidly than according to the exponential 
function (3) to values consistent with Eq. (i). The condition of good agreement with the 
experimental data of [6] shown in Fig. i is established by the empirical equation 

l+ = •  { 1 - -  exp [ - -  y+/(A+ - -  0.25y~/A+)] }, (6) 

where the parameters have the values ~ = 0.41 and A+ = 30, which have been determined [i0] 
on the basis of the principle of maximum stability of turbulent flow. 

The solid curves in Figs. i and 2 represent the results of calculations based on Eq. 
(6). Figure 2 shows that the function (6) correctly mirrors the behavior of the mixing 
length in the interval 20 < y+ < 60. For y+ < i0 it practically coincides with the exponen- 
tial function (3), and for y+ = 60 it makes a smooth transition to the straight line (i). 
It is essential to note that this same quantity y+ = 60 delimits the wall zone characterized 
by the direct dissipation of energy from the average flow as heat [6]. The parameter A+ 
in Eq. (6) also has physical significance, in that it is equal to the total dimensionless 
thickness of the viscous sublayer and the transition (buffer) zone. 

The linear function (i) is valid in a boundary layer, strictly speaking, under the con- 
dition that the tangential stress T can be assumed to be approximately equal to the tangential 
stress T w at the wall. In pipe flow, where the tangential stress T is proportional to the 
distance from the pipe axis, Eq. (i) is applicable only in a limited wall zone. 
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A more general condition corresponding to a logarithmic velocity distribution in pipes 
can be obtained by representing the dependence of the mixing length on the distance in the 
form of an equation involving the ratio of the tangential stresses: 

l+--  xy+ -VT-~- w . (7) 

At a sufficiently large distance from the wall (for y+ > 30), such that the 1 can be neglected 
under the square root sign, the substitution of expression (7) therein enables us to cancel 
the tangential stresses, whereupon the integration of Eq. (5) yields an equation for a log- 
arithmic velocity distribution. 

In order to expand the domain of validity of the function (i) it is useful to introduce 
the concept of the reduced mixing length Zo, which corresponds to the condition of a constant 
tangential stress~ 

lo  = l V ~ .  (8) 

The dependence of lo on the distance y is linear in the flow regions where the logarithmic 
velocity distribution is valid. 

The latter assertion is confirmed by calculating the values of the reduced mixing length 
corresponding to the experimental data of Nikuradse [9] on the velocity distribution in pipes. 
The results of the calculations, which are represented by curves 2 and 3 in Fig. 3, show that 
a logarithmic velocity distribution and the linear function (i) for ~ = 0.40-0.41 exist in 
fully developed turbulent pipe flow only in the shallow wall zone y/R < 0.15-0.2. At a greater 
distance from the wall the reduced mixing length ~o deviates from the linear function (i). 
The maximum deviation (to 25%) is observed at y/R = 0.5-0.6. In the wall zone (at y/R > 0.8) 
the value of ~o increases sharply. 

It can be assumed that the indicated nonlinearity of the reduced mixing length is induced 
mainly by transfer of the kinetic energy of turbulent flucutations into the axial region of 
the pipe. We know [ii] that such energy transfer is not covered by Prandtl's hypothesis, a 
fact that is also apparently manifested in the nature of the observed distribution of lo. 

According to a hypothesis of Kolmogorov [12], the turbulent viscosity ~T is directly 
related to the turbulence kinetic energy ET: 

~ = V E~/O l~. (9) 

A weaker dependence of the turbulence scale L K on the transfer of turbulent fluctuation 
kinetic energy can be expected in this case. 

A comparison of Eq. (9) with the turbulent viscosity equation according to Prandtl's 
hypothesis [i] enables us to deduce a relation between the Kolmogorov turbulence scale and 
the Prandtl mixing length: 

l~o/lo = Y ~ / E ~  . ( l O )  

Here we have introduced the concept of the reduced turbulence scale IKO , which is defined 
according to an equation similar to (8): l~o=l~Tw/T 

Substituting the values of TT/E T calculated according to the experimental data of [13] 
in Eq. (i0), we can determine the distribution of IK0. The results of the calculations, 
which are represented by curves 4 and 5 in Fig. 3, show that the reduced turbulence scale 
IK0 varies essentially linearly over a wide range of values of y/R. The slopes of the 
straight lines in the middle interval (0.2 < y/R < 0.8) are somewhat smaller than in the 
interval of the logarithmic velocity distribution. 

We have thus established the fact that the laws governing the variation of the turbulence 
scale l K and the mixing length ~ in fully developed turbulent pipe flow are based on a 
linear function. The deviation of these quantities from the linear law (i) at a relative 
distance y/R > 0.15 is a consequence of the variation of the tangential stress and the trans- 
fer of turbulence kinetic energy along the radius of the pipe. The nonlinearity of the 
mixing length in the zone next to the wall (for y+ < 60) is attributable to the process of 
direct dissipation of the average flow energy as heat. 
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NOTATION 

A§ dimensionless parameter in the Van Driest exponential equation; e, base of the 
natural logarithm; ET, kinetic energy of turbulent fluctuations, J/ms; l, mixing length,�9 
10, reduced mixing length, m; IK, Kolmogorov turbulence scale, m; /K0' reduced turbulence 
scale, m; R, inside radius of pipe, m; Re, Reynolds number; u, velocity of medium, m/sec; 
u.=~w/p , dynamic velocity, m/sec; u', longitudinal velocity fluctuation, m/sec; v', trans- 
verse velocity fluctuation, m/sec; y, distance from the wall along the normal to it, m; 
yW=yu~/v , dimensionless distance; l+=lu~/~ , dimensionless mixing length; u+ = u/u,, 
dimensionless velocity; ~, dimensionless constant in the Prandtl linear equation; p, density 
of the medium, kg/m3; w, kinematic viscosity coefficient, m2/sec; ~T, turbulent viscosity 
coefficient (turbulent analog of kinematic viscosity coefficient), m2/sec; T, tangential 
stress, Pa; Tw, wall tangential stress, Pa; TT, turbulent tangential stress, Pa. 
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